In predictive analytics and machine learning, the concept drift means that the statistical properties of the target variable, which the model is trying to predict, change over time in unforeseen ways. This causes problems because the predictions become less accurate as time passes.

The term concept refers to the quantity to be predicted. More generally, it can also refer to other phenomena of interest besides the target concept, such as an input, but, in the context of concept drift, the term commonly refers to the target variable.

A simpler definition is; a gradual change in a process characteristic over time.

Examples:

In a fraud detection application the target concept may be a binary attribute FRAUDULENT with values “yes” or “no” that indicates whether a given transaction is fraudulent. Or, in a weather prediction application, there may be several target concepts such as TEMPERATURE, PRESSURE, and HUMIDITY.

The behavior of the customers in an online shop may change over time. For example, if weekly merchandise sales are to be predicted, and a predictive model has been developed that works satisfactorily. The model may use inputs such as the amount of money spent on advertisingpromotions being run, and other metrics that may affect sales. The model is likely to become less and less accurate over time – this is concept drift. In the merchandise sales application, one reason for concept drift may be seasonality, which means that shopping behavior changes seasonally. Perhaps there will be higher sales in the winter holiday season than during the summer, for example.

References

Wikipedia. Concept Drift. https://en.wikipedia.org/wiki/Concept_drift