Control charts, also known as Shewhart charts (after Walter A. Shewhart) or process-behavior charts, are a statistical process control tool used to determine if a manufacturing or business process is in a state of control. It is more appropriate to say that the control charts are the graphical device for Statistical Process Monitoring (SPM). Traditional control charts are mostly designed to monitor process parameters when underlying form of the process distributions are known. However, more advanced techniques are available in the 21st century where incoming data streaming can-be monitored even without any knowledge of the underlying process distributions. Distribution-free control charts are becoming increasingly popular.

A control chart consists of:

  • Points representing a statistic (e.g., a mean, range, proportion) of measurements of a quality characteristic in samples taken from the process at different times (i.e., the data)
  • The mean of this statistic using all the samples is calculated (e.g., the mean of the means, mean of the ranges, mean of the proportions)
  • A center line is drawn at the value of the mean of the statistic
  • The standard deviation (e.g., sqrt(variance) of the mean) of the statistic is also calculated using all the samples
  • Upper and lower control limits (sometimes called “natural process limits”) that indicate the threshold at which the process output is considered statistically ‘unlikely’ and are drawn typically at 3 standard deviations from the center line

The chart may have other optional features, including:

  • Upper and lower warning or control limits, drawn as separate lines, typically two standard deviations above and below the center line
  • Division into zones, with the addition of rules governing frequencies of observations in each zone
  • Annotation with events of interest, as determined by the Quality Engineer in charge of the process’ quality
  • Action on special causes

(n.b., there are several rule sets for detection of signal; this is just one set. The rule set should be clearly stated.)

  1. Any point outside the control limits
  2. A Run of 7 Points all above or all below the central line – Stop the production
    • Quarantine and 100% check
    • Adjust Process.
    • Check 5 Consecutive samples
    • Continue The Process.
  3. A Run of 7 Point Up or Down – Instruction as above

Chart usage

If the process is in control (and the process statistic is normal), 99.7300% of all the points will fall between the control limits. Any observations outside the limits, or systematic patterns within, suggest the introduction of a new (and likely unanticipated) source of variation, known as a special-cause variation. Since increased variation means increased quality costs, a control chart “signaling” the presence of a special-cause requires immediate investigation.

This makes the control limits very important decision aids. The control limits provide information about the process behavior and have no intrinsic relationship to any specification targets or engineering tolerance. In practice, the process mean (and hence the centre line) may not coincide with the specified value (or target) of the quality characteristic because the process design simply cannot deliver the process characteristic at the desired level.

Control charts limit specification limits or targets because of the tendency of those involved with the process (e.g., machine operators) to focus on performing to specification when in fact the least-cost course of action is to keep process variation as low as possible. Attempting to make a process whose natural centre is not the same as the target perform to target specification increases process variability and increases costs significantly and is the cause of much inefficiency in operations. Process capability studies do examine the relationship between the natural process limits (the control limits) and specifications, however.

The purpose of control charts is to allow simple detection of events that are indicative of actual process change. This simple decision can be difficult where the process characteristic is continuously varying; the control chart provides statistically objective criteria of change. When change is detected and considered good its cause should be identified and possibly become the new way of working, where the change is bad then its cause should be identified and eliminated.

The purpose in adding warning limits or subdividing the control chart into zones is to provide early notification if something is amiss. Instead of immediately launching a process improvement effort to determine whether special causes are present, the Quality Engineer may temporarily increase the rate at which samples are taken from the process output until it is clear that the process is truly in control. Note that with three-sigma limits, common-cause variations result in signals less than once out of every twenty-two points for skewed processes and about once out of every three hundred seventy (1/370.4) points for normally distributed processes.[8] The two-sigma warning levels will be reached about once for every twenty-two (1/21.98) plotted points in normally distributed data. (For example, the means of sufficiently large samples drawn from practically any underlying distribution whose variance exists are normally distributed, according to the Central Limit Theorem.)

Wikipedia “Control chart”,

Related Articles: